List

Excited to share our recent work, “Joint Sequence Learning and Cross-Modality Convolution for 3D Biomedical Segmentation,” accepted for CVPR 2017.

Convolutional neural networks have shown effective in image segmentation. However, most of them merely operate with a single modality or simply stack multiple modalities as different input channels. Seeing oncologists leverage the multi-modal signals in tumor diagnosis, we propose a deep encoder-decoder structure with cross-modality convolution layers to incorporate different modalities of MRI data for tumor segmentation.

In addition, we exploit convolutional LSTM (convLSTM) to model a sequence of 2D slices, and jointly learn the multi-modalities and both sequential and spatial contexts in an end-to-end manner. To avoid converging to the dominating background labels, we adopt a re-weighting scheme and two-phase training to handle the label imbalance.

Experimental results on BRATS-2015, an open benchmark for tumor segmentation, evidence that our method yields the best performance so far among the deep methods. To our best knowledge, this is the first end-to-end network jointly considering multiple modalities and the contextual sequences. We believe the proposed framework can be extended to other applications with emerging multimodal signals.

觀察腫瘤科醫師時常交互利用各種醫學影像(MRI, CT, PET)來判斷腫瘤的狀況、位置,為了改進醫療的品質,我們與中部某教學醫院嘗試利用深度網路來改進腫瘤診斷的效率與正確性。很高興達到第一個里程碑並將在今年CVPR發表。

我們設計了第一個可以同時考慮各種掃描影像種類(來源)以及相鄰影像序列關聯性的深度卷積網路,並在腦瘤中達到相當驚豔的效果。同時為了克服醫學領域中常見影像資料量不足的問題,我們更嘗試了少量資料限制下不同的深度網路學習策略。

這是我們第一次嘗試3D醫學影像切割,結果超乎意料之外。在專科醫師的協助下,我們將針對台灣常見的腫瘤,繼續開發其他的卷積類神經網路,協助腫瘤科醫師,消除診斷過程中的「痛點」。

  Posts

1 2 3 6
June 7th, 2018

First Place (#1) in Disguised Face Recognition in CVPR 2018

January 6th, 2019

意想不到的科技部「AI投資潛力獎第一名」

December 16th, 2018

Keep Recruiting for Machine Learning Research Partners for Numerous Visual Sensors

December 16th, 2018

FutureTech Demo and Breakthrough Award (未來科技突破獎)

October 12th, 2018

結合虛與實的試鞋生成網路 (Virtual Try-On Shoe with Generative Neural Networks)

我們都有這樣的困擾,在電子購物的時候,看到一雙好看的鞋子,想買。但是卻又拿不定主意自己穿起來好看嗎?或是搭配某件褲子適合嗎?怎麼讓網路虛擬商城的鞋子,可以有效試在自己的腳上呢? 這個工作的挑戰在於如何使用單張鞋子商品的照片,很自然的合成在使用者的腳上,而且腳可能會有各種姿勢、角度。如何客服這個問題? 很高興大學部專題生(EE) 周晁德 完成了這個 PIVTONS 的虛擬鞋子試穿生成網路,試著解決這個困擾大家很久的問題。 這個有趣的工作也將於十二月初,在澳洲珀斯舉辦 Asian Conference on Computer Vision (ACCV) 2018 以大會演說 (Oral) 的方式跟大家分享這個工作。接下來全新的測試資料集將會公開讓大家使用,如果可以的話,我們也將試試看將整個試穿生成系統上線,讓大家體驗虛擬試鞋的樂趣 — 可以多試穿,多省錢。 我們鼓勵high-risk的研究工作。令人慶幸的是,這工作的發想、資料收集都是專題生獨立完成。當然在過程當中遇到很多GAN生成的問題,網路設計、訓練的問題,幾乎放棄了,還好團隊成員一起想辦法解決,關關難過,關關過(甚至免費擔任model),讓這個兼具技術深度以及商業價值的系統,可以順利完成。 我們也一直努力,讓智能生成(或是辨識)系統,賦予更有意義的應用 […]

September 13th, 2018

Finalist (Top 3) in 2018 IEEE Signal Processing Society Video and Image Processing (VIP) Cup

July 29th, 2018

信手拈來的3D模型搜尋 (Cross-View and Cross-Domain 3D Model Search)

July 27th, 2018

低解析人臉辨識跟解析度放大 (Very Low-Resolution Face Hallucination and Recognition)

June 18th, 2018

Winning Third Place in CVPR 2018 Video Recognition Challenge — Moments in Time

June 13th, 2018

[Video Report] National Investment for the GPU Supercomputer?

June 9th, 2018

Amazing Crowd Size and Positive Feedbacks in the Deep Learning Lecture for GTC 2018 Taipei