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Figure 1. Our model takes incomplete videsos with free-form masks (e.g. random text on the left and curves on the right) as inputs, and
generates the completed videos as outputs. We propose using 3D gated convolutions to deal with the uncertainty of free-form masks and a
combination of designed loss functions to enhance temporal consistency. Best viewed in videos.

Abstract

Free-form video inpainting is a very challenging task
that could be widely used for video editing such as text re-
moval (see Fig. 1). Existing patch-based methods could
not handle non-repetitive structures such as faces, while
directly applying image-based inpainting models to videos
will result in temporal inconsistency (see videos). In this
paper, we introduce a deep learning based free-form video
inpainting model, with proposed 3D gated convolutions to
tackle the uncertainty of free-form masks and a novel Tem-
poral PatchGAN loss to enhance temporal consistency. In
addition, we collect videos and design a free-form mask
generation algorithm to build the free-form video inpaint-
ing (FVI) dataset for training and evaluation of video in-
painting models. We demonstrate the benefits of these com-
ponents and experiments on both the FaceForensics and our
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FVI dataset suggest that our method is superior to existing
ones. Related source code, full-resolution result videos and
the FVI dataset could be found on Github.

1. Introduction

Video inpainting, to recover missing parts in a video,
is a very challenging task that remains unsolved. It is a
very practical and crucial problem and solving this problem
could be beneficial for movie post-production and general
video editing. Among them, free-from video inpainting is
the most difficult and unconstrained problem because the
missing area could be of arbitrary shape (see Fig. 1). In this
paper, we propose a novel model to tackle the free-form
video inpainting task, and both the quantitative and qualita-
tive evaluations show our model can generate state-of-the-
art results with high video quality.

There are many methods proposed for the video inpaint-
ing problem, such as patch-based algorithms [11, 13, 22,
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30], which aim to find the most similar patch from the un-
masked parts of the video to fill in the masked region. How-
ever, patch-based models often fail to recover complex ob-
jects that could not be seen or found easily in the unmasked
parts of the video. The nearest neighbor search algorithms
in patch-based methods also may not work when the ratio of
covered area by free-form masks to that of uncovered area
is high (see Table 2).

Aside from patch-based methods, many deep learning
based models have made tremendous progress on free-form
image inpainting. Nevertheless, simply applying image in-
painting model to videos tends to cause twisted or flickering
results that are temporally inconsistent (See Edge-Connect).

We extend the work of free-form image inpainting to
videos by developing a novel architecture that enhances
temporal consistency. The model is learning based, so
it could model the data distribution based on the training
videos and recover the masked regions. It could even re-
cover objects that are mostly occluded in the video such
as the face in Fig. 1, which is impossible for patch-based
methods. Besides, our method fully utilizes the temporal
information in videos, so the flickering problem of image
inpainting is mitigated.

Specifically, we observe that input videos contain many
masked voxels that are potentially harmful to vanilla convo-
lutions, we design a generator with 3D gated convolutional
layers that could properly handle the masked video by learn-
ing the difference between the unmasked region, filled in re-
gion and masked region in each layer and attend on proper
features correspondingly. In addition, different from image
inpainting, video inpainting has to be temporally coherent,
so we propose a novel Temporal PatchGAN discriminator
that penalizes high-frequency spatial-temporal features and
enhances the temporal consistency through the combination
of different losses. We also design a new algorithm to gener-
ate diverse free-form video masks, and collect a new video
dataset based on existing videos that could be used to train
and evaluate learning-based video inpainting models.

Our contributions could be summarized as follows:

• We extend the work of image inpainting and propose
the first learning-based model for free-form video in-
painting and achieve state-of-the-art results qualita-
tively and quantitatively on the FaceForensics and our
dataset.

• We introduce a novel Temporal PatchGAN (T-
PatchGAN) discriminator to enhance the temporal
consistency and video quality. It could also be ex-
tended to other video generation tasks such as video
object removal or video super-resolution.

• We design a new algorithm to generate free-form
masks. We design and evaluate several types of masks
with different mask-to-frame ratios.

• We collect the free-form video inpainting (FVI)
dataset, the first dataset to our knowledge for train-
ing and evaluation of free-form video inpainting meth-
ods, including 1940 videos from the YouTube-VOS
[32] dataset and 12600 videos from the YouTube-
BoundingBoxes [24] dataset.

2. Related Work
Image Inpainting. Image inpainting, to recover the dam-
aged or missing region in a picture, is firstly introduced
in [4]. Many approaches have been proposed to solve the
image inpainting task, including diffusion-based [3, 4] and
patch-based [2, 5, 8] ones. In general, these methods per-
forms well on simple structure but often fails to generate
complex objects or recover large missing area.

Over the past few years, deep learning based methods
have made tremendous progress on image inpainting. Xie
et al. [31] is the first to introduce convolutional neural net-
works (CNNs) for image inpainting and denoising on small
regions. Subsequently, Pathak et al. [23] extended image
inpainting to larger region with an encoder-decoder struc-
ture and used generative adversarial network (GAN) [10]
where a generator that strives to create genuine images and
a discriminator learns to recognize fake ones are jointly
trained to improve the blurry issue caused by the l2 loss.
Yu et al. [35] further proposed a contextual attention layer
with local and global WGANs to achieve better results.

Free-form Image Inpainting. Recently, image inpaint-
ing with irregular holes (free-form masks) caught more at-
tention because it is closer to the real case. Yan et al. [33]
designed a special shift-connection layer in the U-Net archi-
tecture; Lui et al. [19] proposed the partial convolution; Yu
et al. [34] developed the gated convolution with spectral-
normalized discriminator to improve free-form image in-
painting. Asides from these works, Nazeri et al. [21] pro-
posed a two-stage adversarial model EdgeConnect, where
the edge generator firstly hallucinates edges of the missing
region, and the image completion network generates the fi-
nal output image using hallucinated edges as a priori. Naz-
eri et al. provided a pretrained model that reaches state-of-
the-art, which we set as a baseline in our work.

Although state-of-the-art image inpainting models could
recover missing regions in a picture in a reasonable manner,
extending these models to videos will cause serious tempo-
ral inconsistency as each inpainted frame is different (see
videos).

Video Inpainting. Traditionally, patch-based methods
[11, 13, 22, 30] are used for video inpainting. Wexler et al.
[30] considered video inpainting as a global optimization
problem, where all missing regions could be filled in with
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Figure 2. Model architecture and learned gated value visualization. Our model is composed of (a) a video inpainting generator with
3D gated convolutional layers that fully utilizes information for neighboring frames to handle irregular video masks and (b) a Temporal
PatchGAN (T-PatchGAN) discriminator that focuses on different spatial-temporal features to enhance output quality. (c) The visualization
of learned gating values σ(Gatingt,x,y). The 3D gated convolution will attend on the masked area and gradually fill in the missing feature
points. Note that all gating values are extracted from the first channel of each layer without manual picking.

similar patches from the unmasked parts. Afterwards, New-
son et al. [22] further improved the search algorithm, inte-
grating texture features and initialization scheme. Lastly,
Huang et al. [13] tackled the moving camera problem by
jointly estimating optical flow and colors in the missing re-
gions, and we also take it as our baseline.

State-of-the-art patch-based methods could generate
plausible videos under certain conditions, but the computa-
tion time of these methods is too high for real-time applica-
tions. In addition, patch-based models are limited to repeti-
tive patterns or appeared objects and not feasible to complex
structures and large/long-lasting occlusions. The proposed
model is learning based that could solve both problems by
modeling the distribution of real videos and generate realis-
tic results only by forward inference, without searching.

To solve issues in patch based methods, Wang et al. [28]
proposed the first deep learning based method CombCN for
video inpainting, and we also set it as a baseline. It is a
two-stage model with a 3D convolutional network for tem-
poral consistency, followed by a 2D completion network to
improve video quality. Although their model could be ap-
plied to some random holes during validation/testing stage,
it is rather limited so we do not consider it as a free-form
video inpainting method. Besides, their model only uses
traditional convolution and is trained with the l1 loss, so the
results tend to be blurry in complex scenes [7]. Our model
is single-stage, uses gated convolution to attend on valid

features, and integrates perceptual and temporal generative
adversarial loss to generate clear and plausible videos for
irregular moving masks.

3. Proposed Method

The proposed model (Fig. 2) consists of a generator net-
work G with 3D gated convolution to inpaint videos, and a
Temporal PatchGAN discriminator D with several losses.

3.1. Video Inpainting Generator

We extend the single-stage UNet-like network used for
image inpainting [19] to video inpainting and integrate the
gated convolutional layers in [34] (see Fig. 2 (a)). Dur-
ing training, we combine ground truth video frames {Vt |
t = 1 . . . n} and masks {Mt | t = 1 . . . n} into masked
input video {It | t = 1 . . . n}. The model will inpaint
the masked region and generate the output video frames
{Ot | t = 1 . . . n}.

3.2. Spatial-temporally Aware 3D Gated Conv.

In vanilla convolutional layers, all pixels are treated
as valid ones, which makes sense for tasks with real im-
ages/videos as inputs, such as object detection or action
recognition. However, for inpainting problems, masked
regions are filled with black pixels, so input features for
convolutional layers include invalid pixels (shallow layers)



or synthesized pixels (deep layers), which should not be
treated exactly as normal ones.

To address this problem, we propose the 3D gated con-
volutions extended from [34] to replace vanilla convolutions
in our generator. The 3D convolutions utilizes information
from neighboring frames, while the gated convolutions at-
tends on the irregular masked areas; together, 3D gated con-
volutions could properly handle the uncertainty of free-form
video masks. Specifically, for each convolutional layer, an
additional gating convolutional filter Wg is applied to input
features Ft,x,y to obtain a gatingGatingt,x,y , which is used
as an attention map on the output features Featurest,x,y
from original vanilla convolutional filter Wf according to
the validity (see Fig. 2(c)). The t, x, y are the spatial-
temporal coordinates of the video. It could be expressed
as:

Gatingt,x,y =
∑∑

Wg · Ft,x,y (1)

Featurest,x,y =
∑∑

Wf · Ft,x,y (2)

Outputt,x,y = σ(Gatingt,x,y)φ(Featurest,x,y) (3)

where σ is the sigmoid function to transform gating to val-
ues between 0 (invalid) and 1 (valid), and φ is the original
activation function (e.g. LeakyReLU).

3.3. Loss Functions

The overall loss function to train the model is defined as:

Ltotal = λl1Ll1 + λl1mask
Ll1mask

+ λpercLperc

+ λstyleLstyle + λGLG

(4)

where λl1 , λl1mask
, λperc, λstyle and λG are the weights

for l1 loss, masked l1 loss, perceptual loss, style loss and
Temporal PatchGAN loss, respectively.

Masked l1 loss. The l1 loss focuses on the pixel-level fea-
tures. Since the unmasked area will be pasted onto the final
output video, we separate the l1 loss for all videos:

Ll1 = Et,x,y[|Ot,x,y − Vt,x,y|] (5)

and the l1 loss for the masked region:

Ll1mask
= Et,x,y[Mt,x,y|Ot,x,y − Vt,x,y|] (6)

Perceptual loss. Perceptual loss is firstly proposed in [9]
to keep image contents for style transfer, and is now widely
used for image inpainting [19, 21] and super-resolution [15,
17] to mitigate the blurriness caused by the l1 loss. The
perceptual loss computes the l1 loss in feature level:

Lperc =

n∑
t=1

P−1∑
p=0

|ΨOt
p −ΨVt

p |
N

Ψ
Vt
p

(7)

where ΨVt
p denotes the activation from the pth selected layer

of the pretrained network given the input Vt, and N
Ψ

Vt
p

is the number of elements in the pth layer. We use layer
relu2 2, relu3 3 and relu4 3 from the VGG [27] network
pre-trained on ImageNet [26].

Style loss. We also include the style loss, which is intro-
duced in [9] to keep the image style for style transfer, and
also used in image inpainting [19, 21]. Style loss is simi-
lar to perceptual loss, except that an auto-correlation (Gram
matrix) is firstly applied to the features:

Lstyle =

n∑
t=1

P−1∑
p=0

1

CpCp

|(ΨOtp)T (ΨOtp)− (ΨVt
p )T (ΨVt

p ))|
CpHpWp

(8)
where ΨOtp and ΨVtp are both VGG features in the shape
of (Hp, Wp, Cp) as the ones in perceptual loss 7.

Temporal PatchGAN loss. For the free-form video in-
painting problem, masks could be anywhere in a video, so
we should consider global and local features in each frame,
and the temporal consistency of these features. A naive idea
will be applying a loss function for each of the three aspects
respectively. However, empirically we found that it is hard
to balance the weights of these loss functions, especially
when some of them are GAN losses (adding GAN loss is
a very common strategy to make image inpainting results
more realistic [21, 35, 34]).

Yu et al. proposed an efficient SN-PatchGAN [34],
which applies GAN loss on feature maps of the discrimi-
nator to replace the use of global and local GAN and tackle
the problem that masks could be anywhere and of any form.
Although their work tackles the balancing issue between
GAN losses and solves free-form image inpainting prob-
lem, it does not consider temporal consistency, a pivotal
factor for high-quality video inpainting. Inspired by their
work, we further integrate the temporal dimension and de-
sign a novel Temporal PathGAN (T-PatchGAN) discrimi-
nator that focuses on different spatial-temporal features to
fully utilize all the global and local image features and tem-
poral information together.

Our T-PatchGAN discriminator is composed of 6 3D
convolutional layers with kernel size 3 × 5 × 5 and stride
1×2×2. The recently proposed spectral normalization [20]
is applied to both the generator and discriminator, similar to
[21] to enhance training stability. In addition, we use the
hinge loss as the objective function as to discriminate if the
input video is real or fake:

LD = Ex∼Pdata(x)[ReLU(1 +D(x))]

+ Ez∼Pz(z)[ReLU(1−D(G(z)))]
(9)

LG = −Ez∼Pz(z)[D(G(z))] (10)

where G is the video inpainting network that takes input
video z and D is the T-PatchGAN discriminator.

Note that we use kernel size 3 × 5 × 5 for each layer in
the discriminator, so the receptive field of each output fea-
ture covers the whole videos, and a global discriminator like
[35] is not needed. The T-PatchGAN learns to classify each



spatial-temporal patch as real or fake, which restricts it to
focus on high-frequency features because it only penalizes
at the scale of patches. As the l1 loss already focus on low-
frequency features, using T-PatchGAN could improve the
output video quality in an efficient way.

3.4. Free-form Video Masks Generation

(a) Object-like (31%) (b) Bounding box 
(15%)

(c) Curve-like (32%) (d) Curve-like with 
border constraint 

(30%)

(e) Mask deformation and movement

Figure 3. Masks generated by our algorithm with different mask
types and mask-to-image ratios. The components in a mask video
may move and deform independently as shown in (e).

Training data is extremely important for learning based
methods, and the generation of our input mask videos is
non-trivial as it should consider different scenarios to be
“free-form”. There is no existing database or algorithm
to generate such free-form video masks, so we develop an
video mask generation algorithm based on the image one by
[34] (see Algorithm 1 in the supplementary materials).

The image mask generation in [34] uses several strokes
drawing on a blank image to represent a mask. Each stroke
is composed of a ordered set of control points, which is de-
termined by the trace of a head point initialized at a random
position and repeatedly moving to a nearby position.

Additionally, for free-form video masks, we introduce
the concept of motion: strokes may move and deform over
time (see Fig. 3(e)). Stroke deformation is achieved by ran-
domly moving each control point of a stroke with a certain
probability. For the movement, the concepts of velocity and
acceleration are applied on the strokes. The initial speeds
of strokes are sampled from a normal distribution centered
on 0 since most objects in videos do not have large speeds.

As stated in [19], many methods [14, 19] have degraded
performance when masks cover the border. Therefore, aside
from motion simulation, we also take such border con-
straints into consideration. That is, we generate both masks
that either cover or do not cover the edges of the frame (see
Fig. 3. Masks without border constraint are more difficult
since convolutional filters will have no valid pixels as inputs
in the masked border areas.

Moreover, we consider three different types of masks:
long thin curve-like and round thick object-like masks gen-
erated with different hyper-parameters in our mask genera-
tion algorithm along with bounding-box masks, as shown in

Fig. 3. The curve-like masks are considered easier as most
masked areas are close to valid pixels (unmasked area),
while object-like and bounding-box masks are challenging
since it is hard to inpaint large invalid voxels.

Totally 28,000 free-form videos with mask-to-frame ra-
tio from 0 - 10% to 60 - 70% are generated for training. And
for each mask type, 100 videos are generated for testing.

4. Experimental Results
4.1. Datasets

FaceForensics. We compare with [28] on the FaceForen-
sics dataset [25], which contains 1004 face videos from
YouTube and the YouTube-8m dataset [1] with face, news-
caster or newsprogram tags. The videos are cropped into
128× 128 with the face in the middle during the data prepa-
ration stage, following the setting in [28]. Among them, 150
videos are used for evaluation and the rest are used for train-
ing. The FaceForensics dataset is rather easy for learning-
based methods since the data is less diverse.

Free-form video inpainting (FVI) dataset To test on
more practical cases, we collect videos from the YouTube-
VOS [32] dataset and the YouTube-BoundingBoxes dataset
[24]. The former has about 2000 videos with 94 categories
of object segmentation in 6 frame per second (FPS) and
the latter has about 380,000 videos with 23 kinds of object
bounding boxes in 30 FPS. We choose videos with resolu-
tion higher than 640 × 480 and manually filter out videos
with shot transitions. We set 100 videos from the YouTube-
VOS as testing set, while the training set includes about
15,000 videos. Together with the 28,000 free-form mask
videos, we build the FVI dataset, the first dataset for free-
form video inpainting, to the best of our knowledge.

Our FVI dataset is very challenging for the video inpaint-
ing task due to the high diversity, including different kinds
of objects, animals and human activities. All videos are
from YouTube, closer to real-world scenario. Moreover, the
provided object segmentation and bounding boxes could be
used to test video object removal.

For the experiments, we only use 1940 videos from the
training set as we do not witness a significant improvement
for our model using the full training set. During data pre-
processing stage, we resize videos to 384 × 216 and ran-
domly crop them to 320 × 180 with random horizontal flip.

4.2. Evaluation metrics

We use mean square error (MSE) and Learned Percep-
tual Image Patch Similarity (LPIPS) [36] to evaluate the
image quality. Furthermore, to evaluate the video quality
and temporal consistency, we also calculate the Frchet In-
ception Distance (FID) [12] with I3D [6] pre-trained video
recognition CNN as Vid2vid [29]. See the supplementary
materials for the details.



4.3. Quantitative Results

We evaluate our model on the FaceForensics and FVI
testing set with free-form masks in 7 ranges of mask-to-
frame ratio from 0 - 10% to 60 - 70% (higher mask-to-
frame ratio makes the task more difficult, see Fig. 4). The
state-of-the-art patch-based video inpainting method TC-
CDS by Huang et al. [13], image inpainting method Edge-
Connect(EC) by Nazeri et al. [21] and learning based video
inpainting method CombCN by Wang et al. [28] are set for
comparison. We train Nazeri et al. ’s model and Wang et
al. ’s model on our dataset. Note that Wang et al. ’s model
is originally trained on bounding boxes, but we train it with
our free-form mask for fair comparison.

From Table 1 we could see that the FaceForensics
dataset is easy for learning-based models but not for the
patch-based method TCCDS [13], because face features are
non-repetitive and hence cannot be recovered with nearby
patches. Yet, the overall structure of faces are learnable
and thus learning-based methods are favorable. Compared
with the two deep learning based methods, our model has
superior performance on curve-like and object-like masks
since it fully utilizes information of neighboring frames to
recover the missing areas by 3D convolutions and the pro-
posed T-PatchGAN loss. As for bounding-box masks, our
model outperforms CombCN while on par with EC. Note
our model is only trained on FVI. Hence, for fair compar-
ison, we train EC from scratch on FVI without having it
pre-trained on Celeb-A as stated in the original paper.

On the other hand, Table 2 shows that our FVI dataset
is more challenging for learning-based methods for its high
diversity. It is rather difficult for learning-based models to
capture the distribution of the highly diverse masks, while
patch-based methods like TCCDS could easily find realis-
tic enough patches to fill in the mask given the mask is not
large. Nonetheless, we could notice that for some masks,
the nearest neighbor search in TCCDS fails to find candi-
dates when most patches are covered by the mask. Note
that CombCN is only trained with the l1 loss, so while it
reports a lower MSE, its results are actually blurry, bearing
high perceptual distance to ground truths (high LPIPS). Our
method generates clear results (low LPIPS and FID) and
demonstrates high temporal consistency (low FID), which
is of crucial importance in video inpainting task.

4.4. Qualitative Results

We also demonstrate the visual comparison in Fig. 5
with the corresponding video link. As mentioned in 4.3,
CombCN’s [28] outputs are blurry due to the l1 loss, TC-
CDS [13] may paste wrong patches, and Edge-Connect [21]
will have flickering results (best viewed in videos). Our
model could generate reasonable frames with high tempo-
ral consistency.

In addition, our trained model can be easily applied on

object removal, as shown in Fig. 7. More visual compar-
isons could be found in the supplementary materials.

Mask
Type TCCDS EC CombCN 3DGated

(Ours)

M
SE
↓ Curve 0.0031* 0.0022 0.0012 0.0008

Object 0.0096* 0.0074 0.0047 0.0048
BBox 0.0055 0.0019 0.0016 0.0018

L
PI

PS
↓ Curve 0.0566* 0.0562 0.0483 0.0276

Object 0.1340* 0.0761 0.1353 0.0743
BBox 0.1260 0.0335 0.0708 0.0395

FI
D
↓ Curve 1.281* 0.848 0.704 0.472

Object 1.107* 0.946 0.913 0.766
BBox 1.013 0.663 0.742 0.663

Table 1. Quantitative results on the FaceForensics testing set with
masks without border. Our model has superior performance for the
curve-like and object-like masks. *TCCDS fails on some masks;
the results are average of the successful cases.

Mask
Type TCCDS EC# CombCN 3DGated

(Ours)
M

SE Curve 0.0219* 0.0047 0.0021 0.0024
Object 0.0110* 0.0079 0.0049 0.0056

L
PI

. Curve 0.2838* 0.1204 0.0794 0.0521
Object 0.2001* 0.1420 0.2054 0.1078

FI
D Curve 2.105* 1.033 0.766 0.609

Object 1.287* 1.083 1.091 0.905
Table 2. Quantitative comparison on the FVI testing set without
border. The results are the average of different mask-to-frame
ratios (see the supplementary materials for original data). Our
model outperforms the baselines for perceptual distance (LPIPS)
and temporal consistency (FID). CombCN has better MSE but
their results are blurry (see Fig. 5). #Pretrained on Places2 [37].

Figure 4. Effect of mask size on LPIPS and FID on the FVI test set
with curve-like masks. Larger masks are harder for all methods.

4.5. User Study

Aside from qualitative comparison, we also conduct a
human subjective study to evaluate our method. During the
study, we display a pair of result videos (ours against base-
lines or ground truth, in random sequence), and ask sub-
jects to choose the more realistic and consistent one. The
mask video is shown meanwhile for reference. For each

http://bit.ly/2FwbZl4


Figure 5. Visual comparison with the baselines. TCCDS: past-
ing wrong patches; Edge-Connect: inconsistent between frames;
CombCN: blurry. See vidoes

mask type (object-like and curve-like) and mask-to-hole ra-
tio (0-10% to 60-70%), we randomly select 20 video pairs
to compare and each video pair is presented to 5 subjects.

Results from 150 participants are shown in Fig. 6. Our
model outperforms the baselines in both object-/curve-like
masks for all mask-to-frame ratios. In addition, when com-
pared with ground truth, our method still has 23% prefer-
ence on average, which indicates subjects could not tell our
results and the original videos apart in 23% cases.

4.6. Ablation Study

We conduct an ablation study to evaluate the contribution
of each proposed component. From Table 3 we could see

Figure 6. User preference on the FVI testing set (ours versus
baselines and ground truth). 50% means that the two methods
are equally good. Our model outperforms the baselines in both
the object-like and curve-like masks for all mask-to-frame ratios.
When compared with ground truth (GT), our method could still
have about 23% preference for curve-like masks.

that 3D convolution and T-PatchGAN are both crucial be-
cause the two components provide a great amount of tempo-
ral information by 3D convolutions. Corresponding video
comparisons could be found on YouTube.

3D
conv.

Gated
conv.

T-Patch
GAN LPIPS↓ FID ↓

X X 0.1769 1.243
X X 0.1321 1.121
X X 0.1716 1.201
X X X 0.1209 1.034

Table 3. Ablation study on the FVI dataset with object-like masks.
We can see that all components are important. We set up all mod-
els with about the same number of parameters (i.e., increase the
channel number for 2D convolution and vanilla convolution) to
exclude the gain from additional parameters.

4.7. Extension to Video Super-Resolution

Our model could be extended to video super-resolution,
interpolation or prediction by using proper masks. For
video super-resolution, given a low-resolution video with
width W, height H, length L and up-sampling factor K, we
construct the input mask video in shape (W ×K, H ×K,
L) where each pixel (x, y, t) is masked if x or y is not a mul-
tiple of K. For frame interpolation, masks could be added
between frames. In Fig. 8 and Table 4, we compare our
method with well-known super-resolution methods SRRes-
Net and SRGAN in [17]. Our model could generate plau-
sible high-resolution videos with low perceptual distance.
See result videos.

Bicubic SRResNet SRGAN Ours
MSE↓ 0.0089 0.0044 0.0074 0.0076

LPIPS↓ 0.5141 0.3582 0.1785 0.1631
FID↓ 1.502 1.083 1.035 1.096

Table 4. Quantitative comparison for spatial super-resolution on
the VOR testing set for 4x up-sample. We can see that our model
could reach low perceptual quality.

http://bit.ly/2Fu1n6b
https://bit.ly/2Fwbibs
https://bit.ly/2OijKOj


Figure 7. Our model could be easily extended to video object re-
moval. See videos.

5. Discussion and Future Work

Our model fails when the testing video is very different
from the training data as most learning-based methods do.
In addition, when the masked area is too thick, our model
fails to generate natural results. Still, compared with the
baselines, our model performs better under the two condi-
tions (see videos).

Besides, compared to 2D convolutions, 3D convolutions
require more parameters that could lead to higher redun-
dancy. Nonetheless, our model is single-stage, feed-forward
and does not depend on optical flows, so the inference speed
is fast, and the performance gain is significant. A potential
solution to reduce the number of parameters is to integrate
the Temporal Shift Module [18] so that 2D convolutions
could deal with temporal information.

Also, we found that we could reach a similar perfor-
mance to that of gated convolutions by simply increasing
the number of channels in the ablation study. This may im-

Figure 8. Two examples of spatial super-resolution with 4x up-
sampling. Compared with the two baselines, our model could re-
cover the eyes of the chameleon. See corresponding videos.

ply that our model still underfits the FVI dataset, or gated
convolutions have less impacts for video inpainting com-
pared to image inpainting. Potential future works would be
to compare and improve convolutional layers for free-form
video inpainting or combine with optical flows [16].

Another future work is to integrate the user guided in-
puts as [34, 21] by training the model with edge images of
video frames as additional inputs. The model could gen-
erate more plausible results given the object shape informa-
tion from edges. Additionally, during inference, users could
draw lines to change the edge images to manipulate the out-
put videos, which is useful for video editing.

6. Conclusion

In this paper, we proposed the first learning based free-
form video inpainting network to our knowledge, using 3D
gated convolution and a novel GAN loss. We demonstrate
the power of 3D gated convolution and temporal PatchGAN
to enhance video quality and temporal consistency in the
video inpainting task. Our system could also be extended to
video object removal, video super-resolution or video inter-
polation. Both the quantitative and qualitative results indi-
cate that our model achieve state-of-the-art results.
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