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Deep Multi-Kernel Convolutional LSTM Networks
and an Attention-Based Mechanism for Videos

Sebastian Agethen, Winston H. Hsu

Abstract—Action recognition greatly benefits motion under-
standing in video analysis. Recurrent networks such as long
short-term memory (LSTM) networks are a popular choice for
motion-aware sequence learning tasks. Recently, a convolutional
extension of LSTM was proposed, in which input-to-hidden and
hidden-to-hidden transitions are modeled through convolution
with a single kernel. This implies an unavoidable trade-off
between effectiveness and efficiency. Herein, we propose a new
enhancement to convolutional LSTM networks that supports
accommodation of multiple convolutional kernels and layers.
This resembles a Network-in-LSTM approach, which improves
upon the aforementioned concern. In addition, we propose an
attention-based mechanism that is specifically designed for our
multi-kernel extension. We evaluated our proposed extensions in
a supervised classification setting on the UCF-101 and Sports-
1M datasets, with the findings showing that our enhancements
improve accuracy. We also undertook qualitative analysis to
reveal the characteristics of our system and the convolutional
LSTM baseline.

I. INTRODUCTION

ACTION recognition is a challenging-yet-essential task in
modern computer vision that is typically performed on

video clips. Videos are now frequently encountered in our
everyday lives on social media platforms such as Instagram,
Facebook, and YouTube. The amount of video data is indeed
vast; in 2015, 500 hours of videos were uploaded to YouTube
every minute1. These quantities mean that automatic process-
ing by machines is necessary, which is why action recognition
is too. Many applications can benefit from action recognition;
for example, autonomous driving, security and surveillance,
and sports analysis.

Unlike static images, videos have an inherently spatiotem-
poral nature. The motion of subjects, such as persons, animals,
or objects, carries significant information on the current action.
By observing and exploiting motion, we can improve our
understanding of an action over simple classification of static
background features.

Particularly successful attempts at action recognition have
been made using deep learning [1][2][3][4]. Two approaches
are common: deep convolutional networks (DCNs) have
achieved impressive results, but they are unaware of tem-
poral dependencies (i.e., reordering frames has little effect),
and therefore they perform poorly when processing motion
information. A second choice is recurrent networks, among
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Fig. 1. Employing multiple kernels in ConvLSTM. Left: Traditional ConvL-
STM with single kernel input-to-hidden and hidden-to-hidden transitions, here
3 × 3. Right: Exemplary multi-kernel configuration. We propose replacing
the single kernel with a set of kernels. The total number of channels remains
unchanged. In addition, a deep network may be used instead of a single layer.

which long short-term memory [5] (LSTM) in particular has
been used frequently in recent works. LSTM networks are
sensitive to reordering of frames, and they can therefore be
used for sequence learning.

Several variations of LSTM exist. Most recently, con-
volutional LSTM cells [6] (ConvLSTM) have been pro-
posed, which add the benefits of convolution to an LSTM
unit, namely spatial invariance; for example, given a two-
dimensional image, a convolutional filter can correctly respond
to an object no matter at which location it is placed in the
image. This is not the case with fully connected units, which
were previously used in LSTM. In the following, we follow
the notation in [6] and refer to traditional LSTM as FC-LSTM,
whereas we refer to convolutional LSTM as ConvLSTM. Our
work is greatly based on ConvLSTM, and we discuss it in
more detail in Section III.

In this paper, we reason that using a single kernel as in
ConvLSTM is not optimal. First, whether a single optimal
kernel size exists is unclear. Small kernels may not be able
to build a causal connection between a phenomenon and a
related previous one, as is the case when observing an actor’s
motion or with the simple example of a fast-moving object.
Larger kernels, however, are very slow to compute and lack
spatial invariance. We exhibit this in an example in Section III.
Second, we note a lack of depth, if we consider the transition



2

at times t → t + 1: The convolutional operations performed
can be viewed as a one-layer DCN. Additional depth and
nonlinearities in particular are known to markedly improve
learning.

To address these issues, we propose the following:
• Multi-kernel approach. Replacement of the single ker-

nel convolution with N output channels by a set of
convolutional kernels of different dimensions (such that
the number of output channels still sum up to N).

• Additional depth. Introduce additional depth for both
input-to-hidden and hidden-to-hidden processing. For ex-
ample, 1 × 1 convolutions may be used on the concate-
nated multi-kernel output, as seen in Fig. 1. An alternative
use is 1 × 1 bottlenecks ahead of large filters to reduce
the computational burden.

• Flow-based masking. To support the multi-kernel ap-
proach, we propose generating kernel-dependent attention
masks. One mask is generated for each convolutional ker-
nel and applied pixelwise to the input before convolution.

To the best of our knowledge, such a Network-in-LSTM
has not been used before. Attention-based models for different
LSTM variants are known, but they differ from our approach,
which is specifically tailored to support the multi-kernel ap-
proach.

The remainder of our paper is organized as follows: In
Section II, we discuss related work to our approach. We then
present our method in detail in Section III. In Section IV, we
comprehensively evaluate our approach, and we conclude our
work in Section V.

II. RELATED WORK

1) Action recognition: Action recognition has been a popu-
lar area of research for many years. To capture the information
in videos, handcrafted global features such as the histogram
of oriented gradients [7] can be used. In the presence of noise,
however, such features fail easily [7]. To mitigate this issue,
local features have increasingly been adopted [8][9][10]. Such
local features focus on salient spatial regions in images; for
example, a person, and can be temporally extended to some
degree for videos.

Most modern action recognition methods rely on deep fea-
tures. In a breakthrough work, Karpathy et al. [2] successfully
investigated pooling strategies to fuse temporal information in
DCNs. Further advances were made by Simonyan et al. [3],
who showed that deep features extracted on optical flow can
improve video classification. A notable insight of their work
is the fact that convolutional networks based on optical flow
features can be fine tuned from DCNs taught on RGB inputs,
such as that used for image classification on the ImageNet
dataset [11]. The multistream architecture introduced in [3]
has since been adopted by many works for action recognition
[12][13].

The works by Donahue et al. and Ng et al. [14][1] suc-
cessfully employed recurrent networks, specifically LSTM
networks, to learn temporal sequences in action recognition
videos. Current approaches make extensive use of pretraining
on large datasets. Carreira et al. recently proposed inflated

3D convolutions [15], and they demonstrated state-of-the-art
performance by pretraining on large image and video datasets.

Several widely used datasets for action recognition are
available. The most popular datasets have been UCF-101
[16] and HMDB-51 [17], which both contain thousands of
videos and are therefore considered small scale. More recently,
large-scale datasets such as Sports-1M [2], Kinetics [18], and
Moments in Time [19] have been published, each of which
encompasses hundreds of thousands to millions of videos.

2) Recurrent architectures and applications: In this work,
we investigate improvements to convolutional recurrent net-
works, in particular ConvLSTM [6]. As traditional LSTM
models suffer from a lack of spatial invariance by using
fully connected operations, Shi et al. addressed the issue by
replacing the operations with convolutions and subsequently
evaluating their system on a meteorological task. We detail the
ConvLSTM equations in Section III.

Although they lack spatial invariance, fully connected
LSTM-based models have also been widely used in fields
other than action recognition. Sutskever et al. [4] introduced
the sequence-to-sequence framework to generate fixed-size
representations from inputs of unconstrained sizes. The frame-
work allows many applications; for example, the processing
of natural language for translation purposes [20][4]. Based on
the same approach, several works have proposed solutions to
tasks such as video-caption generation [21][22][23].

Encoder–decoder structures, of which the sequence-to-
sequence framework is one example, are frequently used
for future prediction. Typically, an encoding LSTM reads in
a sequence from the past or present, whereas a decoding
LSTM produces the corresponding future. This can be used
for low-dimensional tasks such as human pose prediction
[24]. However, some work has also attempted to solve high-
dimensional problems, such as the pixelwise reconstruction
of future video frames; Srivastava et al. [25] proposed an
unsupervised learning method that is evaluated on the synthetic
MovingMNIST dataset, wherein synthetic video sequences are
generated by assigning a handwritten digit (such as those in
the MNIST dataset) a speed and an orientation. We use this
intriguing dataset in our qualitative evaluation. Future predic-
tion tasks are also possible with the convolutional extension
ConvLSTM; for example, future semantic segmentation [26]
and weather prediction [27][6].

Attention-based mechanisms in (FC-)LSTM have proven
useful for a variety of tasks. Gao et al. [28] used such a model
for video captioning applications. Wang et al. [29] employed
attention-based LSTM networks for a tracking task. Fan et
al. [30] conducted action recognition based on the human
skeleton; their system architecture employed LSTM networks
to achieve that goal. Finally, Zhao et al. [31] used visual
attention for fine-grained object classification.

Most recently, an attention system was attempted in connec-
tion with ConvLSTM in the work by Li et al. [32]. Notably,
our use of attention masks differs from their work; although
our approach is also motion based, we generate masks that
are specialized for use with a specific convolutional kernel in
a multi-kernel system.
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3) Inception: Finally, our work bears some resemblance
to the well-known GoogLeNet [33], in particular the so-
called Inception module, as well as some resemblance with
the network-in-network (NIN) approach [34]. An Inception
module is an ensemble of convolutional filters of different
sizes (typically 1×1, 3×3, and 5×5) in parallel. The module
is designed purely with computational complexity (in terms of
operations and parameters) in mind and applied in a DCN for
static image classification. By contrast, our work is designed
under different considerations; we investigate the behavior of
ConvLSTM for temporal processes and argue that multiple
kernels are necessary for correct recognition.

III. METHODOLOGY

A. Long Short-Term Memory

In the following we briefly recapitulate both classical long
short-term memory [5] (FC-LSTM) and the convolutional
extension (ConvLSTM) presented in [6].

1) Classic model: Consider an input sequence x of length
T , where xt represents the t-th element. Such a sequence may
for example be the RGB frames of a video clip or features
extracted from a deep convolutional stack. An LSTM unit is
typically expressed as follows:

it = σ (Wxixt +Whiht−1 +Wci ◦ ct−1 + bi) (1)
ft = σ (Wxfxt +Whfht−1 +Wcf ◦ ct−1 + bf ) (2)
ot = σ (Wxoxt +Whoht−1 +Wco ◦ ct−1 + bo) (3)
ct = ft ◦ ct−1 + it ◦ tanh (Wxcxt +Whcht−1 + bc) (4)
ht = ot ◦ tanh (ct) (5)

The tensor ct is the so-called cell state, whereas ht is named
the hidden state, which acts as the output of the unit over
time. The tensors it, ft, and ot are the control gates. We term
the operations Wx∗ ·xt the input-to-hidden transition and the
operations Wh∗ ·ht−1 the hidden-to-hidden transition. We also
note that some studies and implementations may ignore the
Hadamard terms Wc∗ ◦ ct−1.

Backpropagation over time, which is used to train recurrent
networks, suffers from the vanishing gradient [5] problem.
The issue lies with the choice of activation functions; Sigmoid
σ(x) = 1

1+e−x and hyperbolic tangents tanh(x) = 2σ(2x)−1
have derivatives with upper bounds at 0.25 and 1, respectively,
and repeated application therefore reduces the magnitude of a
gradient. Notably, the LSTM formulation above avoids this
problem; given any output hti , we can find a path to any cell
state ctj while passing only a single activation function such
as tanh(·) or σ(·).

Furthermore, we note the use of the dot product in the
formulation. In effect, this resembles a fully connected layer
as known from DCNs. Such fully connected layers are not
spatially invariant [35].

2) Convolutional extension: To address the problem of
spatial invariance, the authors of [6] propose to replace the
dot product by convolutional operations. We refer to such a
system in this work as ConvLSTM. The exact formulation is
as follows:

it = σ (Wxi ∗ xt +Whi ∗ ht−1 +Wci ◦ ct−1 + bi) (6)
ft = σ (Wxf ∗ xt +Whf ∗ ht−1 +Wcf ◦ ct−1 + bf ) (7)
ot = σ (Wxo ∗ xt +Who ∗ ht−1 +Wco ◦ ct−1 + bo) (8)
ct = ft ◦ ct−1 + it ◦ tanh (Wxc ∗ xt +Whc ∗ ht−1 + bc)

(9)
ht = ot ◦ tanh (ct) (10)

This modification ensures spatial invariance of the unit.
The tensors i, f ,o, c, and h are now convolutional maps and
therefore higher dimensional.

B. Problem of Kernel Sizes

Each of the operations Wx∗ ∗xt, Wh∗ ∗ht−1 is associated
with a single convolutional kernel. A problem that arises is
the choice of optimal size; choosing a kernel size that is
too large results in the system degenerating into the original
fully connected formulation. However, if the size is too small,
the kernel will not be able to capture all information. In the
original work on ConvLSTM, the authors [6] found that a
kernel size of 5 × 5 is optimal for the particular problem
evaluated in their work, which was an unsupervised prediction
problem such as weather prediction.

In this paper, we argue that the exclusive use of kernels of
one particular size is not optimal for ConvLSTM; instead we
suggest using an array of kernels of different sizes, reminiscent
of the Inception module used with DCNs in [33]. Consider a
video showing two objects, where the objects are moving at
significantly different speeds. A small kernel is unable to link
a fast-moving object during the transition from timestep t to
timestep t+1, simply because it has moved too far. However,
always using large kernels is disadvantageous because they
require more parameters, are significantly slower ( 5·53·3 ≈ 2.78),
and degenerate into fully connected layers at very large sizes,
which lack spatial invariance. To solve this dilemma, we
propose employing multiple kernels.

1) Motion and kernel size: To support our hypothesis,
we first visualize the problem of kernel size and velocity
with the following simple experiment. In a variation of the
MovingMNIST dataset (which we discuss in more detail in
Section IV-C2), we construct a synthetic dataset of sequences
of moving digits. We first pick a single digit from the MNIST
dataset and subsequently assign it a velocity and a direction.
The moving digit is then animated for T = 20 frames. The
appearance of the digit remains unchanged at all times (i.e.,
we only translate it). On contact with the image boundaries,
the moving digits are reflected. An example can be seen in
Fig. 2.

On this dataset, we now train a future predictor in the form
of an encoder–decoder architecture. The encoding ConvLSTM
reads in an input sequence of Tin = 10 frames and produces
a fixed-size state (C,H). A second decoding ConvLSTM is
initialized with this state and generates Tout = 10 output
features. A final 1 × 1 convolution layer reconstructs the
predicted sequence. With each pixel taking on values in [0, 1],
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Fig. 2. Sequence of a single handwritten digit moving over time (here with
T = 5). Note that the appearance of the digit remains unchanged at all times.

Fig. 3. Test set (cross-entropy) loss for an unsupervised future prediction
task with single moving digits (MovingMNIST). We vary the average moving
speed of the digits but keep the appearance otherwise intact. Our observation
is that the loss improves overproportionally for smaller convolutional kernels
on slowly moving digits in comparison with their larger counterparts. Based
on this, we propose that there is a correlation between moving speed and
optimal kernel size.

we can choose the binary sigmoid cross entropy (SCE) as our
prediction loss:

L =
−1
N

N∑
n=1

T∑
t=1

pn log p̂n + (1− pn) log (1− p̂n)

To implement the encoder–decoder structure, we tried three
different (traditional) ConvLSTM layers, each of them with a
different kernel size (i.e., 3× 3, 5× 5, and 7× 7 kernels). We
varied the average speed at which the digit was moving and
repeated the experiment.

Fig. 3 shows our results. The associated loss for smaller
kernel sizes grew significantly faster than for larger kernel
sizes. Concurrently, the computational costs were much higher
for the larger kernels. We stress, however, that the digits in our
experiment had static appearances, and in a real-world dataset
motion may not necessarily be the only factor that determines
the optimal kernel size.

C. Concatenation of multiple kernels

During implementation of a multi-kernel configuration,
special care must be taken to correctly concatenate parallel
kernels (see Fig. 4). From the ConvLSTM equations (6)–(9),
we can see that the term inside the activation function (i.e.,
Wx∗ ∗ xt +Wh∗ ∗ ht−1 + b∗) differs only in the parameters

(a) (b) (c)

Fig. 4. Multi-kernel concatenation problem. Each gate activation i, f, o, g
should take a mixture of both kernels as input. (a) Using naive concatenation,
each gate takes only one kernel output as input. (b) Splitting and interleaving
before concatenation are one possible remedy for this. (c) An additional 1 x
1 convolution also avoids this problem and integrates both results.

W, b. A common implementation optimization is therefore to
use two convolution operations Wx ∗xt and Wh ∗ht−1 with
C ′ = 4 · C channels. The result is then split up into the four
corresponding terms.

In our system, when using multiple kernels in parallel,
we concatenate the individual results. At this point, the data
order must be considered, as visualized in Fig. 4a. A naive
concatenation will result in the gate activations i, f, o, g to
depend solely on one of the used kernels. However, each
gate activation should take both kernel outputs as input. We
propose two strategies to avoid this. First, as in Fig. 4b, we
can interleave the results by first splitting each kernel’s output
into four and then concatenating in the correct order. Second,
we can use a 1×1 convolution operation, which integrates the
individual results (see Fig. 4c). Our results use the interleaving
strategy in Fig. 4b if no final 1× 1 kernel is present.

Our second strategy has the additional benefit that it in-
troduces additional nonlinearity and depth, which is known
to be beneficial [36] to deep learning. Convolutions with a
1×1 kernel can, however, also be used as so-called bottleneck
layers: the layer is added to reduce the number of input
channels before applying large convolutional kernels (e.g., a
5 × 5 kernel). We test bottleneck layers in our inception-like
configuration in Section IV-A4.

D. Attention-based masking

In our multi-kernel extension, any kernel learns on all
regions of an image, even if it is not optimally suited for this
image region. Ideally, our system should avoid this. In this
work, we aim to enforce large kernels to concentrate on faster
objects and smaller kernels to concentrate on slower objects.
Note that the background scene and static objects may also
contribute to the learning process, and we consequently sug-
gest to apply attention masks only on a subset of convolutional
kernels.

To determine the utility of a kernel on a particular image
region, we generate attention masks from optical flow features.
The magnitude of the optical flow determines the distance a
particular pixel has moved on the x- or y-axis, and therefore
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Fig. 5. Multi-kernel attention scheme. For each kernel using attention, we
generate a mask mi by convolution ci over the flow features. Subsequently,
for each ConvLSTM kernel ki, the corresponding mask is applied to the RGB
input features by element-wise multiplication.

represents speed. To generate each mask, we employ a DCN
on the optical flow features. A non-linearity, such as the
sigmoid, is applied subsequently. This mask can then be
applied by element-wise multiplication to all input features
xt. Our goal is that through backpropagation of error, each
mask specializes onto the corresponding convolutional kernel.
Fig. 5 shows this process.

The above masking process affects input-to-hidden convo-
lutions (i.e., parameters Wx∗), and we reserve a hidden-to-
hidden extension (Wh∗) for future work.

IV. EVALUATION

In the following, we present our experimental results. We
consider both quantitative and qualitative aspects. First, we
seek a direct comparison with the ConvLSTM baseline, and we
show on the example of video classification that our proposed
method improves classification accuracy. Following this, we
attempt to gain a better understanding of our modifications in
the qualitative analysis.

A. Quantitative results

The work in [6] was conducted with weather forecasting
in mind. Our proposed changes, however, benefit applications
in which visible objects move at different speeds. Hence, we
chose action recognition as the application to quantitatively
evaluate our system. We begin with a description of the two
popular action recognition datasets used in this work: UCF-
101 [16] and Sports-1M [2].

1) Datasets: The UCF-101 action recognition dataset con-
tains 13,320 videos, each showing a single human action. The
average length of the videos is 180 frames (i.e., just a few
seconds), and there are 101 categories, which implies a small
number of videos per class, slightly more than 100 on average.
This causes models trained solely on UCF-101 to overfit easily.
The dataset offers three different splits into training and test
data; we used split one.

The second dataset, theSports-1M dataset, is a collection
of over one million videos on YouTube in 487 classes, which
all relate to sports. The videos have unconstrained lengths,
ranging from a few seconds to hours. The size of the dataset
inherently causes difficulties; required storage space is massive
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Fig. 6. Model used for all VGG-based experiments on Sports-1M and UCF-
101.

even on the lowest resolution (approximately 7 TB), and
processing one million videos in each epoch leads to long
computation times. For this study, we therefore decided to run
our experiments on a subset by randomly sampling 20 classes2.

2) Experimental setup: Two difficulties arose during our
experiments. First, unrolling a convolutional LSTM over time
requires large amounts of GPU memory. Second, training on
a small-scale dataset such as UCF-101 will lead to severe
overfitting when training from scratch. To mitigate these two
problems, we therefore decided to initialize the weights of the
convolutional stack with pretrained weights and subsequently
freeze them. Here, we describe our setup for the two convo-
lutional base network variants.

The first set of experiments used a VGG-16 [36] con-
volutional stack. We used ImageNet-pretrained weights and
extracted features of dimensions 14 × 14 × 512 at layer
conv5_3. Using the larger spatial extent in this layer ex-
poses the differences between smaller and larger kernels more
clearly. A ConvLSTM unit then processed the features. We
established both 3×3 and 5×5 kernel baselines with C = 512
channels and then compared with a mixture of both kernels
(C3×3 = 256, C5×5 = 256) while keeping the total number
of channels fixed. The ConvLSTM layer was followed by
pooling, an FC-LSTM, and a Softmax classifier.

Our second set of experiments employed a recent state-of-
the-art action recognition network named I3D [15]. Here, we
initialized with Kinetics-pretrained weights and extracted RGB
features of dimensions 7×7×1024 at layer incept5b. Accu-
racy was averaged over all frames in both sets of experiments.

3) Results of VGG-based configurations: UCF-101 con-
tains very short videos, and we therefore sampled them at
15 fps. From a set of 140 extracted frames, we chose T = 50
(i.e., frames 25 to 75) frames as input. Our results for this
dataset can be found in Table I.

Videos in Sports1M-20 are typically longer, and we there-
fore sampled frames at 1 fps. We sampled a set of 140 frames
and picked T = 30 frames (i.e., frames 70 to 100) as input

2rafting, skittles, test cricket, shidokan, pitch and putt, dirt track racing,
freestyle skiing, street football, sprint, motorcycle speedway, trial, dressage,
surf fishing, juggling club, soft tennis, sailing, road racing, jetsprint, gatka,
and enduro.
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Fig. 7. Classwise comparison of our multi-kernel system with two ConvLSTM baselines on the UCF-101 test set (split 1). Notably, classes 27 and 71
(Fencing, PushUps) strongly outperform both baselines.

TABLE I
SUPERVISED CLASSIFICATION RESULTS OF UCF-101 ON TOP OF A
VGG [36] ARCHITECTURE. OUR MULTI-KERNEL CONFIGURATION

CLEARLY OUTPERFORMS BOTH BASELINE VARIANTS.

Configuration Top-1 Accuracy
Baseline 3× 3× 512 71.27%
Baseline 5× 5× 512 72.20%
Simple Multi-kernel 73.18%
C3 = C5 = 256 (Ours)
Simple Multi-kernel (with stacked 1× 1) 74.09%
C3 = C5 = 256 (Ours)

TABLE II
TIME PER ITERATION OF CONVLSTM LAYER WITH CV GG = 512 INPUT

CHANNELS, BATCH SIZE OF 10, AND T = 20 FRAMES PER VIDEO. THE
NUMBERS ARE AVERAGED OVER 100 ITERATIONS.

Configuration Training Testing
3× 3× 256 3.424s 2.821s
5× 5× 256 4.430s 3.290s
Simple Multi-kernel 4.007s 3.008s
C3 = C5 = 128 (Ours)
Simple Multi-kernel (with stacked 1× 1) 4.176s 3.072s
C3 = C5 = 128 (Ours)

for our system. In cases where the videos were not sufficiently
long, those frames were sampled modulus their length. Our
results are presented in Table IV.

Our experiment evaluated the performance of the proposed
multi-kernel system and compared it against the ConvLSTM
baselines, which use a single convolutional kernel only. Our
approach outperformed both the 3× 3 and 5× 5 ConvLSTM
baselines, with improvements of 2.82% and 1.89% on UCF-

TABLE III
NUMBER OF PARAMETERS REQUIRED FOR DIFFERENT CONVLSTM
CONFIGURATIONS. WE ASSUME CV GG = 512 INPUT CHANNELS.

Configuration Weights Biases
3× 3× 256 4.7 M 1024
5× 5× 256 13.1 M 1024
7× 7× 256 25.7 M 1024
Simple Multi-kernel 8.9 M 1024
C3 = C5 = 128 (Ours)
Simple Multi-kernel (with stacked 1× 1) 9.1 M 1024
C3 = C5 = 128 (Ours)

TABLE IV
SUPERVISED CLASSIFICATION RESULTS OF SPORTS1M-20 ON TOP OF A

VGG [36] ARCHITECTURE. BOTH BASELINE AND THE PROPOSED
METHOD EACH HAVE A TOTAL OF C = 512 OUTPUT FEATURE MAPS.

Configuration Top-1 Accuracy
Baseline 3× 3× 512 80.67%
Baseline 5× 5× 512 81.09%
Simple Multi-kernel 81.34%
C3 = C5 = 256 (Ours)

101, respectively. The improvement was more marginal on
Sports-1M, where we gained 0.67% and 0.25%, respectively.
In both cases, the larger 5× 5 baseline performed better than
the 3×3 baseline, as already observed in Fig. 2. Furthermore,
we attempted several configurations of 3×3 and 5×5 kernels
for our multiple kernel system on UCF-101, and the results
are shown in Fig. 8.

Both baseline and our extension performed well below state-
of-the-art levels on UCF-101. Modern state-of-the-art net-
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Fig. 8. Top-1 accuracy on the UCF-101 dataset with varying proportions of
3× 3 and 5× 5 convolutional kernels.

(a) (b)

Fig. 9. Configurations used in our experiments: (a) simple multi-kernel and
(b) Inception-like multi-kernel.

works utilize extensive pretraining (e.g., on Kinetics as in [15])
and batch normalization [37] or dropout [38]. Our proposed
extension can be combined with such modern networks easily.
Here, we report the results of experiments with an I3D-based
setup and show that state-of-the-art can be beaten on a subset
of UCF-101.

4) Results of I3D-based configurations: We first show that
standard I3D can be outperformed on the RGB stream on a
subset3 of classes of UCF-101. According to [15], I3D greatly
profits from high temporal resolution, and consequently, we
sampled frames at 24 fps, selecting clips of 64 frames.
The pooling and FC-LSTM used in the VGG configuration
were removed and replaced with a 1 × 1 convolution with
batch normalization. We tested a configuration similar to the
Inception layer in [33] (see Fig. 9b). We used C = 256 in
all cases. Because batch normalization can combat overfitting,
we supplied all convolutional kernels with such normalization.
Our results for a 17-classes subset of UCF-101 are presented in
Table V; both of our configurations outperformed I3D, which
is state-of-the-art, by over 0.84%.

We also evaluated our proposed optical flow-based attention.
Using an I3D base network and the simple multi-kernel

3ApplyEyeMakeup, BlowDryHair, BoxingPunchingBag, FloorGymnastics,
HandstandPushups, HorseRace, JumpRope, Lunges, MilitaryParade, Play-
ingCello, PlayingPiano, PlayingTabla, PushUps, Rafting, Shotput, Skiing,
WalkingWithDog

TABLE V
STATE-OF-THE-ART EXPERIMENT ON A 17-CLASS SUBSET OF UCF-101.
OUR INCEPTION-LIKE MULTI-KERNEL OUTPERFORMS STANDARD I3D BY
0.84% AS WELL AS BOTH CONVLSTM BASELINES ON THE RGB STREAM.

FURTHER IMPROVEMENT CAN PRINCIPALLY BE ACHIEVED BY
PRETRAINING THE CONVLSTM LAYER, WHICH IS OUTSIDE THE SCOPE OF

THIS STUDY. FOR NOMENCLATURE, PLEASE REFER TO FIG. 9.

Configuration Top-1 accuracy
I3D Baseline 96.62%
ConvLSTM 3× 3 Baseline 96.46%
ConvLSTM 5× 5 Baseline 96.62%
Inception multi-kernel Ours 97.46%

TABLE VI
CLASSIFICATION RESULTS ON UCF-101, CHOOSING I3D AS THE BASE
NETWORK: END-TO-END TRAINING AND ABLATIVE STUDY FOR OUR

FLOW-BASED ATTENTION SCHEME.

Configuration Top-1 accuracy
ConvLSTM 3× 3 Baseline 86.33 %
ConvLSTM 5× 5 Baseline 86.92 %
Simple multi-kernel Ours 87.21%
Simple multi-kernel Ours 87.39%
(with flow-based attention)
Inception multi-kernel Ours 88.40%
Inception multi-kernel Ours 90.09%
(trained end-to-end)

configuration C3×3 = 128, C5×5 = 128, we generated
attention masks and applied them to the input features of the
ConvLSTM. The result in Table VI shows an improvement of
0.18%. We used a single convolutional layer to generate the
attention masks. In our future work, we will consider deeper
architectures to improve flow masks further.

Finally, we trained an Inception multi-kernel in an end-
to-end fashion by simultaneously fine tuning the I3D base
network. The Inception multi-kernel was an excellent choice
for this experiment because 1×1 bottleneck convolutions help
reduce the memory footprint significantly. Table VI shows
that training in an end-to-end fashion improved accuracy by a
further 1.69%.

B. Analysis

Because our proposed extensions may perform better on
certain data, we also provide a breakdown of classification
accuracy by class for UCF-101 (with the VGG-based setup).
Our system improved classification if both the blue and red
bars in Fig. 7 show positive values. Considerable improve-
ments can be seen in certain categories, such as Fencing or
Pushups. In other cases, a class did not benefit from multiple
kernels. We suggest that this occurs if motion velocity is fairly
constant throughout the instances of a class. Such an example
is MoppingFloor, where a pure 3× 3 ConvLSTM exhibits
better performance.

To investigate this more closely, we collected the sets of
UCF-101 classes in which our system performed significantly
worse or better (i.e., classes with a difference of at least
10% accuracy) and computed the magnitude of the optical
flow in these videos. Taking the median over the respective
sets of classes, we can investigate the distribution of squared
velocities v = x2 + y2, where x, y are the components of the
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Fig. 10. Histogram of squared optical flow velocities v =
(
x2 + y2

)
for two sets of classes. The blue line shows the distribution for classes that performed

significantly better in the ConvLSTM 3×3 baseline, whereas the red line shows the counts for classes in which our approach outperformed the 3×3 baseline.
For velocities 200 ≤ v ≤ 400, the blue line is significantly below the median of all classes, while the red line is above the median. In other words, our
extensions work best when many velocities between 200 and 400 are present. Note that the peak near v = 400 is because we clipped all x, y values with
magnitudes above 20, and we focus on 0 ≤ v ≤ 400 here (the maximum value of v is 800). Furthermore. the histogram counts are normalized by number
of videos per class.

two-dimensional optical flow. The histogram for comparison
with the 3× 3 ConvLSTM baseline can be found in Fig. 10,
and the histogram for comparison with the 5× 5 ConvLSTM
baseline is in Fig. 11.

Our improvements in terms of classification accuracy coin-
cide with a larger proportion of higher velocities in the optical
flow, whereas the failure cases coincide with a reduced amount
of these speeds. More specifically, the divergence occurs for
200 ≤ v ≤ 400 compared with the 3 × 3 baseline and for
100 ≤ v ≤ 300 compared with the 5 × 5 baseline. This
makes sense; we can improve performance over the 3 × 3
ConvLSTM particularly if more higher velocities than those
that a 3 × 3 convolutional kernel can capture are present.
Similarly, to improve performance over the 5×5 ConvLSTM,
more medium velocities must be present because only these
can be captured by the smaller convolutional kernel.

1) Computational complexity: We outline the computa-
tional impact of our multi-kernel approach in Table II. All
timings refer exclusively to the ConvLSTM layer (i.e., they do
not include the feature extractor). As expected, the processing
time for mixing kernels of two sizes is between the required
times for the traditional ConvLSTM layers of the respective
kernel sizes. The overhead is minimal and in the order of 1%.

We also computed the number of parameters in Table III,
again only for the ConvLSTM layer. The results underline
the necessity of our proposed changes, because larger filters
require tens of millions of parameters. To clarify, consider
that the 25 million parameters of a 7×7 ConvLSTM make up
approximately 18% of the total parameters of VGG-16. Mixing
kernels of different sizes enables reduction of the parameter
count. This count can be further reduced by adding 1 × 1
bottleneck layers ahead of larger convolutional kernels.

TABLE VII
PREDICTION LOSS (SCE) FOR LOCAL MOTION IN HUMAN GESTURES ON

THE JHMDB DATASET. SMALL KERNELS PROVIDE SLIGHTLY BETTER
PERFORMANCE, HOWEVER THE IMPACT IS SMALLER THAN FOR GLOBAL
MOTION. Normal speed REFERS TO SAMPLING THE DATASET AT EVERY

FRAME, WHEREAS fast speed INDICATES SAMPLING ONLY EVERY THIRD
FRAME.

Configuration Normal speed Fast speed
3× 3× 256 1288 1521
5× 5× 256 1295 1521
7× 7× 256 1331 1553

2) Global motion and local motion: In Section III-B1, we
studied how convolutional kernels of different sizes reacted
to moving objects. However, our investigation was limited to
global motion, in which an object is uniformly moving in one
direction. Here, we investigate if the same is true for local
motion using human gestures as examples. Therefore, we use
an action recognition dataset with pose annotation, JHMDB
[39]. Human poses in JHMDB are represented by 15 two-
dimensional pose joint coordinates.

Our goal is to analyze local motion. To simplify our experi-
ments, we first eliminated texture information as well as global
motion information as follows: we preprocessed the pose data
by subtracting the coordinates of the center joint, here “belly.”
This was followed by centering and scaling. To build an input
representation that can be processed by a ConvLSTM, we
generated a skeleton for each pose by drawing lines between
pose joints on a black background. Fig. 12 shows examples of
this dataset (top row), and visualizes prediction results for both
local and global motion. To test the influence of the kernel
size, we again used a prediction task as in Section III-B1.
Images of size 56× 56 were max-pooled and processed by a
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Fig. 11. Histogram of squared optical flow velocities v =
(
x2 + y2

)
(also see Fig. 10) for a 5× 5 ConvLSTM baseline and our extension. In comparison

to Fig. 10, the red and blue lines diverge earlier, approximately between 100 ≤ v ≤ 300. This is logical; our system performs better than a pure 5 × 5
ConvLSTM baseline when there are fewer high velocities and more small velocities.

(a) (b)

Fig. 12. Visualization of (a) Local motion and (b) global motion prediction
on JHMDB. Top row: Groundtruth, bottom row: Prediction.

two-layer ConvNet first. The resulting 28 × 28 features were
fed to a ConvLSTM with C = 256. The prediction task was
implemented in an encoder–decoder fashion, and the used loss
was the sigmoid cross entropy.

Quantitatively, the results in Table VII show a slight im-
provement for smaller kernel sizes. Compared to the global
motion experiment (see Fig. 3), the effect is significantly
smaller. We argue that gesture motion typically occurs in a
more confined area. By providing a mixture of small and large
kernels, our system is robust to both global and local motion.

C. Qualitative results

Here, we discuss visualizations that provide insight into
our proposed extensions. In particular, we discuss saturation
problems and our attention scheme.

1) Saturation in ConvLSTM: Gate activations in our base-
line ConvLSTM models typically took on extreme values.
Using our multi-kernel scheme with additional depth, i.e., the
1 × 1 convolution in our model, this was not the case. We
visualize this matter in Fig. 13, where we show the feature
maps (after applying σ and tanh, respectively). Fig. 13 a)
and 13 b) appear black and white due to the extreme values,
whereas our approach in 13 c) and 13 d) produces well-
balanced features.

We also note a difference in homogeneity between Fig. 13 c)
and 13 d), which differs only in an additional tanh activation

(a) ConvLSTM 3× 3 (b) ConvLSTM 5× 5

(c) Multi-kernel, no additional activa-
tion function.

(d) Multi-kernel, tanh activation.

Fig. 13. Visualization of the three LSTM gates (input, forget, output) and
cell activation (tanh term in cell-state) features (in that order). Notably, both
baselines (a, b) are oversaturated, taking on only black-and-white color values.
Adding the nonlinearity improved homogeneity within gates (c, d). Best
viewed digitally.
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(a) Input sequence.

(b) Masks for 5× 5 kernel. (c) Masks for 7× 7 kernel.

Fig. 14. Visualization of the (16-channel) input attention masks on a
modified MovingMNIST dataset for the (a) last frame in sequence. Black
areas represent 0 and removed information, whereas white areas represent 1
and admit information. Notice there is a preference in (b) to admit the slow
moving digit (“9”) and in (c) to admit the fast moving digit (“7”).

function before the 1 × 1 convolutional layer. These findings
clarify which feature map is associated with which gate;
input gate activations are generally high and encourage saving
of input information, whereas forget gate activations have a
tendency to be lower. Note that cell activations have a value
range of (-1,1) and therefore appear darker and are not directly
comparable to the control gates.

2) Multi-kernel attention: In Section III, we discussed
a flow-based attention mechanism specifically for multiple
kernel systems. To visualize the attention masks, we chose
the MovingMNIST dataset, which is a synthetic dataset that
is based on the handwritten digits of the well-known MNIST
dataset. Sequences of 20 frames were generated by picking
a 22 × 22 digit from MNIST and pasting it into a 64 × 64
empty bitmap. A speed and an orientation were assigned to the
digit. On contact with the image borders, the digit “bounced”
back. Several variations of this dataset exist; here, we use
the sequence generator supplied4 with the original ConvLSTM
work [6] to generate a sequence with two digits, where one
digit moves at an average speed of 1 and the other at an
average speed of 8.

Following [6] and [25], we trained a future predictor based
on our multi-kernel ConvLSTM. As in the original ConvLSTM
[6], we patchified the input. The encoding ConvLSTM was
fitted with a 5× 5 and a 7× 7 kernel, both using the attention
mechanism.

3) Discussion: We visualize the learned masks and the
corresponding frame sequence in Fig. 14. Due to the patchifi-
cation, each mask had 16 channels. Visual inspection reveals
that the slower digit (the “9”) is more frequently associated
with the smaller kernel (i.e., it is represented by a white blob;
white represents a high activation value) in Fig. 14b a total of
10 out of 16 times. The opposite is true for the larger kernel
in Fig. 14c, where the fast-moving digit (“7”) is represented

4Website: http://home.cse.ust.hk/∼xshiab/

11 out of 16 times by a white blob. This clearly shows the
tendency of the larger kernel to associate with faster objects
and supports our initial argument on multi-kernel ConvLSTM.

V. CONCLUSION

We analyzed the problem of different speeds in ConvLSTM
and proposed replacing the single convolutional kernel with
a set of kernels or a small network. To the best of our
knowledge, we are the first to propose such an extension. We
also presented an attention-based method that is specifically
tailored to our system. Our results were tested using the
popular UCF-101 and Sports-1M action recognition datasets,
and the findings were discussed using qualitative analysis.

1) Future Work: In Section III-D, we described an attention
scheme for use with multiple kernels. We limited the investiga-
tion to the input-to-hidden operations Wx∗ and demonstrated
the behavior of multiple kernel attention exemplary on Mov-
ingMNIST. Future studies may wish to examine if an extension
to hidden-to-hidden (Wh∗) operation is beneficial for multiple
kernel systems. An initial idea is to introduce an additional
latent state to the ConvLSTM layer, which is manipulated by
input and forget gates in a manner similar to the cell-state in
equation (9). However, this will come at the expense of higher
memory usage.
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