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Abstract

We propose a cross-domain image-based 3D shape re-
trieval method, which learns a joint embedding space for
natural images and 3D shapes in an end-to-end manner.
The similarities between images and 3D shapes can be com-
puted as the distances in this embedding space. To better
encode a 3D shape, we propose a new feature aggrega-
tion method, Cross-View Convolution (CVC), which models
a 3D shape as a sequence of rendered views. For bridg-
ing the gaps between images and 3D shapes, we propose
a Cross-Domain Triplet Neural Network (CDTNN) that in-
corporates an adaptation layer to match the features from
different domains better and can be trained end-to-end. In
addition, we speed up the triplet training process by pre-
senting a new fast cross-domain triplet neural network ar-
chitecture. We evaluate our method on a new image to 3D
shape dataset for category-level retrieval and ObjectNet3D
for instance-level retrieval. Experimental results demon-
strate that our method outperforms the state-of-the-art ap-
proaches in terms of retrieval performance. We also pro-
vide in-depth analysis of various design choices to further
reduce the memory storage and computational cost.

1. Introduction

There has been a growing number of applications using
3D shapes. Publicly-available online 3D shape databases
(e.g., 3D Warehouse and Thingiverse) enable users to search
and download the 3D shapes for various applications (e.g.,
3D printing or augmented reality). These databases provide
text-based interfaces to let users search 3D shapes by in-
putting the keywords. However, text-based inputs are often
too general (rough) to precisely express the target 3D shapes
users intend to retrieve. This recently motivates the image-
based 3D shape retrieval (IBSR) research that use images as
queries to better retrieve the 3D shapes [12, 7, 14].

Figure 1 shows the idea of our method. A user can input
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Figure 1. We propose a cross-domain image-based 3D shape re-
trieval. Given an input query image, our system automatically re-
turns a list of similar 3D shapes by L2 distance. Our method learns
a joint image and 3D shape embedding space. Adaptation Layer
and Cross-View Convolution are presented to learn better repre-
sentations for images and 3D shapes respectively. See Figure 2 for
more details.

a query photo, and our system will automatically return a
list of similar 3D shapes. We propose a new cross-domain
learning model to better generate the image and shape repre-
sentations in a joint embedding space. Therefore, the sim-
ilarities between images and 3D shapes can be effectively
computed by the distances in this space.

Convolutional neural network (CNN) has been shown
powerful on feature representations. As the growth of the
number of 3D shapes, various deep learning models are de-
veloped for 3D shape recognition [21, 20] and reconstruc-
tion [5, 7]. This fact shows a great potential of CNNs to
extract meaningful feature representation for 3D shapes.
However, there exist two main challenges for cross-domain
3D shape retrieval: (1) how to find a suitable feature repre-
sentation to better encode a 3D shape, so it can effectively
represent a 3D shape and be compared with image features,
and (2) how to jointly embed images and 3D shapes into the
same feature space.

Most of the prior work mainly focus on 3D shape clas-
sification. Two mainstream methods for classifying the 3D
shapes are: view-based [21, 20] and voxel-based [25, 1, 16]
methods. View-based CNN methods take several rendered
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Figure 2. System overview of the proposed end-to-end cross-domain triplet neural network (CDTNN) for image-based 3D shape retrieval.
In the training stage, 3D shapes are rendered into a set of consecutive views. Images and rendered views are fed into Image-CNN and
View-CNN respectively for feature extraction. To match the features across different domains, we propose an adaptation layer for adapting
the real image to the rendered views. For better encoding a 3D shape, we propose a Cross-View Convolution (CVC) layer to aggregate
a sequence of views and generate a compact shape representation. Triplet loss is employed to jointly optimize the image and 3D shape
representation in an end-to-end manner, which enforces the distance between an anchor image to a negative shape at least farther than the
distance between the anchor image to a positive shape by a certain margin.

images as inputs for recognition. They leverage well-
exploited 2D CNN models and the large-scale image data
[17] for pre-training. In contrast, voxel-based methods use
3D convolution and 3D pooling layers, and process 3D data
in the 3D space directly.

Different from prior work for 3D shape classification,
our method aims at cross-domain image-based 3D shape
retrieval. To better match the features between images and
3D shapes, we adopt view-based CNN methods for encod-
ing a 3D shape. It is crucial to design a view aggregation
method to effectively combine the information from differ-
ent rendered views and generate a compact global feature
representation. Instead of using a view-pooling layer to ag-
gregate the features (e.g., max-pooling in MVCNN [21]),
we propose a new feature aggregation method, Cross-View
Convolution (CVC), which models a 3D shape as a se-
quence of rendered views that takes sequential information
into account. Our experimental results show that our se-
quence modeling method further improves the results from
MVCNN (see Table. 2).

Triplet neural network is commonly used to capture the
intra-class and inter-class differences [19, 24, 28]. How-

ever, traditional triplet neural networks often adopt the same
structure for three streams, which are not directly applicable
for our task on cross-domain image-based 3D shape search.
To address this problem, we propose a new triplet architec-
ture, Cross-Domain Triplet Neural Network (CDTNN), that
incorporates an adaptation layer and can be trained end-to-
end. The proposed structure is general and can be adopted
for other cross-domain tasks.

We evaluate our method on ObjectNet3D [26] for in-
stance retrieval and our new dataset for category-level re-
trieval 1. Our dataset contains 12,311 3D shapes from Mod-
elNet40 [25] and 10,000 images from [17] and Google Im-
age Search. We manually select images that have the ob-
jects near the image center (with certain translations and
rotations) and include backgrounds around the objects (see
examples in Figure 5). The purpose of collecting a new
dataset is to better simulate the real situation where an user
takes a photo of an object under the unconstrained environ-
ment. The main contributions of this paper are summarized
as the following:

1The dataset and source code are available at: http://cmlab.
csie.ntu.edu.tw/˜weitang114/ibsr

http://cmlab.csie.ntu.edu.tw/~weitang114/ibsr
http://cmlab.csie.ntu.edu.tw/~weitang114/ibsr


• We propose an end-to-end cross-domain image-based
3D shape retrieval. It is shown experimentally to out-
perform state-of-the-art approaches on ObjectNet3D
[26] for instance-level retrieval and our new dataset for
category-level retrieval.

• We propose a new view aggregation method, Cross-
View Convolution (CVC), to effectively encode a 3D
shape from a sequence of rendered views, and a cross-
domain triplet neural network (CDTNN) that incorpo-
rates an adaptation layer to better match the features
from different domains.

• We speed up the training of CDTNN by presenting a
fast cross-domain triplet neural network architecture,
and provide an in-depth analysis of various design de-
cisions to further reduce the memory storage and com-
putational cost.

2. Related Work
3D Shape Classification: various methods have been

proposed for 3D shape classification: view-based [21, 20]
and voxel-based [25, 1, 16]. View-based models leverage
the well-exploited 2D CNN models and large-scale image
data [17] for pre-training. Su et al. [21] (MVCNN) project
a 3D shape into a fixed number of views. Each view is fed
into a CNN to extract features. A view-pooling layer is used
to aggregate the features from different views and gener-
ate a global feature representation. Finally, the view-pooled
feature representation is fed into fully connected layers for
classification. However, MVCNN uses a max-pooling layer
to aggregate features, which ignores the sequential infor-
mation between consecutive views. To better leverage the
sequential information, we propose a new view aggrega-
tion method that takes the view sequences into account and
shows better results than view-pooling.

3D Shape Retrieval: Wang et al. [23] propose a sketch-
based 3D shape retrieval by Siamese Networks. They train
two Siamese Networks to extract features from sketches and
two rendered views of a 3D shape. Instead of using two ren-
dered views, our model is capable of utilizing a sequence of
views of a 3D shape at the same time. Massa et al. [14]
leverage 3D CAD models for object detection in 2D im-
ages. To match the features from two different domains,
they use an adaptation layer for adapting real images to ren-
dered views. Our adaptation layer is different from theirs
in two folds. First, they do not train their model in an end-
to-end manner, i.e., they keep CNN layers fixed and only
train the adaptation layer individually. We train our cross-
domain triplet network in an end-to-end manner. Second,
they only use synthetic images for training the adaptation
layer, which still has an appearance gap for real images. In-
stead, we train our model with real images to further reduce
the gaps between two different domains.

Li et al. [12] propose a framework to jointly embed im-
ages and 3D shapes into the same space. The embedding
space is built based on the distances of HOG features from
3D shapes. However, their method is not scalable for large-
scale 3D shape datasets, as it requires to compute the dis-
tances for all training 3D shape pairs. Also, their method is
not trained end-to-end. Tasse et al. [22] build a multi-modal
3D shape retrieval system by embedding images, sketches
and 3D shapes in the same vector space based on word vec-
tor. Their method assumes that during training, the category
labels are given, while our method uses only the pairwise
similarities for training.

Different from prior methods for 3D shape classification,
our method aims at cross-domain image-based 3D shape re-
trieval. We propose an end-to-end Cross-Domain Triplet
Neural Network (CDTNN) for matching the features from
two different domains. To better encode a 3D shape, we
propose a Cross-View Convolution (CVC) to aggregate a
sequence of views. We also improve the training speed and
memory storage with a fast cross-domain triplet neural net-
work architecture.

3. Method
3.1. 3D Shape Representation

To match the 3D shapes with the 2D images, we ren-
der V views of each 3D shape by Phong Shading [15]
with a black background. We propose a cross-domain net-
work to bridge the gaps between the real images and non-
photorealistic rendered 3D views. Each rendered view is
fed into a View-CNN, and the feature maps are aggregated
to generate a global representation of a 3D shape. We adopt
the AlexNet [9] for Image-CNN and View-CNN. The pa-
rameters from different View-CNNs are shared. The pool5
feature map is selected as the feature representation.

We use AlexNet for fairly comparing with MVCNN
[21]. AlexNet has a similar model complexity with their
base model VGG-M [4]. We believe that using more sophis-
ticated models can further improve the performance, but the
investigation of different base models is out of the scope of
this work.

3.2. Cross-View Convolution (CVC)

For view-pooling in MVCNN [21], the feature maps of
different views are max-pooled and generate a global fea-
ture for representing a 3D shape. However, max-pooling
is unaware of the sequential information of the consecutive
views and treats each view independently. The motivation
behind our method is that the rendering process for V views
can be seen as sequentially taking photos around an object.
Each rendered view is correlated to its consecutive views.
Furthermore, some views are more important than the oth-
ers. For example, the back view of a “dresser” looks very
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Figure 3. Cross-View Convolution (CVC) is proposed to aggregate the features from the consecutive views into a compact 3D shape
representation. (a) The feature map for each of the V views is a w × h× C tensor, where w is width, h is height, and C is the number of
channels. (b) The tensors from different views are stacked together and generate C × (w × h × V ) tensors, which are convolved by K
CVC 3D kernels (c). The size of each 3D kernel is 1 × 1 × V × C. K feature maps are generated (d) and stacked together to obtain a
w × h×K feature map (e). The feature map is then flattened to a vector for 3D shape representation. (Best viewed in color)

similar to the back view of a “bookshelf,” i.e., we should
give lower weights to the back view for a dresser. We as-
sume that the 3D shapes are upright oriented along a con-
sistent axis as in [25, 23], since most of 3D CAD models
in the current online databases, e.g., ShapeNet [3] and 3D
Warehouse, are human-designed and often have common
orientations.

We propose a Cross-View Convolution (CVC) layer to
better exploit the sequential information, which is not well
exploited in the prior literatures. Specifically, the size of the
feature map for each of the V views is w×h×C, where w is
width, h is height and C is the number of channels (Figure
3 (a)). We stack the tensors of each channel from different
views and generate C× (w×h×V ) tensors (Figure 3 (b)).
We convolve the tensors with K CVC kernels (Figure 3 (c))
and generate K feature maps (Figure 3 (d)). Finally, K fea-
ture maps are stacked together for the shape representation
(Figure 3 (e)). The CVC kernel can be seen as a weighted
summation across different views to model the sequential
information. To make the output channel number consistent
with the input, we set K = C = 256 in our experiments.

3.3. Jointly Embedding Images and 3D Shapes

The CNNs for images (Image-CNN) and views (View-
CNN) are learned jointly to construct a joint embedding
space. We use triplet neural network architecture and pro-
pose a fast triplet architecture to speed up the training.
The goal of triplet neural network is to enforce the anchor-
negative distances at least farther than the anchor-positive

distances by a certain margin:

dpos − dneg +margin < 0, (1)

where dpos is the anchor-positive distance and dneg is the
anchor-negative distance. The three streams in the triplet
network are anchor image, positive shape, and negative
shape (see Figure 2). We use Image-CNN with the adaption
layer for the anchor image stream and View-CNNs with the
CVC layer for the positive and negative shape streams. The
triplet loss is defined as:

Losstriplet = dpos − dneg +margin (2)

We only consider the triplets that break the constraints and
the final loss becomes:

Loss =

{
Losstriplet if Losstriplet > 0

0 Otherwise.
(3)

The features are normalized by their L2 norm. The distance
metric is the squared Euclidean distance. Image-CNN and
V streams of View-CNN are shared with the same param-
eters. Since Image-CNN and View-CNN stem from two
different domains, directly using the same parameters will
lead to the performance drop. In the next section, we will
explain how to share the parameters of CNNs from two dif-
ferent domains without deteriorating the performance.

3.3.1 Adaptation Layer

To bridge the gaps between image and 3D shape feature rep-
resentations, we propose to utilize an adaptation layer after
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Image-CNN. We choose to add the adaptation layer after
Image-CNN rather than View-CNN, since it can be utilized
as attention masks to detect the salient objects in the im-
ages (the query images of our dataset are not always central-
ized). The proposed Cross-Domain Triplet Neural Network
(CDTNN) with the adaptation layer jointly learns a triplet
network for different domains end-to-end. We use a fully
connected layer followed by an ReLU layer for the adapta-
tion layer. The output size of the fully connected layer is
equal to the input size of the feature map.

3.3.2 Fast Cross-Domain Triplet Neural Network

We propose a new Fast-CDTNN architecture to further
speed up the training of CDTNN. Our idea is that instead
of sampling the triplets before the forward passes in a simi-
lar way as prior triplet-based methods [24, 19, 8] (see Figure
4 (a)), we enumerate all possible triplets after the forward
passes (see Figure 4 (b)). Different from [2] for a single-
domain triplet neural network, our triplet neural network
involves cross-domain triplets. The advantages of the triple
enumeration method are: First, the CNN features of the
same images and 3D shapes do not need to be re-computed.
Second, each image or shape can contribute to many triplet
losses.

CDTNN Fast-CDTNN
# Images P P
# Shapes 2P QC
# Triplets P PQ2(C − 1)
# Forward passes P + 2P × V P +QC × V

Table 1. Comparison of the computational cost and triplet num-
bers in a batch for CDTNN and Fast-CDTNN. Q is the number
of shapes for each category, C is the number of classes and V is
the number of views. We multiply V (views) for computing the
number of forward passes for 3D shapes, as each rendered view is
fed into a View-CNN. Fast-CDTNN requires similar (or less) for-
ward numbers (i.e., passing through Image-CNN and View-CNN),
but can generate much more triplets than CDTNN. For the exam-
ples shown in Figure 4, we have P = 3, Q = 1, C = 3 and
V = 12. CDTNN generates 3 triplets and requires 75 forward
passes, while Fast-CDTNN generates 6 triplets and only requires
39 forward passes.

Thus, our Fast-CDTNN generates more triplets while re-
quiring similar computational cost as CDTNN (see Table 1).
As a result, Fast-CDTNN converges faster than CDTNN,
i.e., approximately 5× faster in the training time of our ex-
periments.

We denote the triplet loss Lijk for the i-th image, j-th
positive 3D shape and k-th negative 3D shape. Each triplet



loss is computed by Eq. 2. We filter out the triplets whose
values are less than zero and only keep the positive ones
[19]. The final loss is the mean of all valid triplet losses:

Loss =
1

N

P∑
i=1

Q∑
j=1

Q(C−1)∑
k=1

ReLU(Lijk), (4)

where P is the number of images, Q is the number of shapes
for each category, C is the number of classes and N is the
number of valid triplet losses. Each image has Q positive
shapes and Q(C − 1) negative shapes (we use the shapes
from other categories as negatives), so we generate total
PQ2(C − 1) triplets for each batch. We set ReLU′(0) = 0
to handle the non-differentiability of the ReLU function for
computing the back-propagation.

Moreover, we integrate the triplet combination, triplet
filtering, and loss into a single triplet loss layer. The loss
computation can be done in a single forward-backward
pass to further reduce the computing time. We set P =
50, Q = 3, V = 12, and C = 40 for our experiments. For
each batch, Fast-CDTNN generates 17,550 triplets, which
are significantly more than the 50 triplets used in original
CDTNN.

3.4. Implementation

We implement our models by TensorFlow [6]. The pa-
rameters of the layers in Image-CNN and View-CNN are
pre-trained by ImageNet 2012 [17]. The weights of Cross-
View Convolution and Adaptation Layer are initialized with
Orthogonal Initialization [18] and their biases are initial-
ized to 0. We set margin = 0.2 in triplet loss and use
Adam Optimizer for training the neural networks. We con-
duct our experiments on a Linux workstation with an Intel
Xeon E5-2650 v3 CPU, 128 GB memory, and one NVIDIA
Tesla K80 GPU. It takes approximately 30 hours for our fast
cross-domain triplet neural network to converge.

3.5. Data Preprocessing

We process the images for the data augmentation in the
training phase. The original size of images is 256×256. We
randomly crop a patch of 227× 227 and flip it horizontally.
We subtract from the images the mean values of the RGB
channels from ImageNet 2012 [17]. Then, we convert the
images from RGB into grayscale to make our network learn
more shape information and insensitive to the color varia-
tions. We render V = 12 views for each 3D shape using
Phong Shading [15] by placing 12 virtual cameras around
the 3D shape every 30 degrees. The cameras are elevated
30 degrees from the ground plane.

4. Experiments

4.1. Dataset

Existing image to 3D shape datasets [13, 27] are not suit-
able for our purposes since the size of these datasets are
too small to train our network. We evaluate our method on
ObjectNet3D [26] for instance-level object retrieval, which
contains 100 categories and 44,147 3D shapes. To better
simulate the real situation where an user takes photos under
unconstrained environment, we build a new large-scale im-
age to 3D shape dataset. The dataset consists of 12,311 3D
shapes, 10,000 images, and 40 categories. Images and 3D
shapes are annotated with category labels. There are totally
9,843 3D shapes and 8,000 images for training, and 2,468
3D shapes and 2,000 images for testing. The 3D shapes
and images are adopted from ModelNet40 [25] and Ima-
geNet 2012 [17] respectively. For three missing categories
in ImageNet: xbox, glass box, and tv stand, we crawl 250
images for each of them from Google Image Search. There
are totally 250 images for each category. 200 images are for
training and 50 images are for testing.

4.2. Image-based 3D Shape Retrieval

We conduct the experiments for image-based 3D shape
retrieval on our dataset. A 3D shape is considered relevant
to a query image if they belong to the same category, fol-
lowing the standard evaluation criteria for cross-domain 3D
shape retrieval [23, 10, 11, 22]. Note that our method only
requires similarities for training, and class label is only used
to obtain the similarity. We extract the features for both
query images and 3D shapes with our CDTNN network and
compute the L2 distances for ranking the 3D shapes. The
retrieval performance is evaluated by mean average preci-
sion (mAP).

Table 2 shows the mAP for different methods. We com-
pare our method with three baseline methods: AlexNet [9],
MVCNN [21], and an augmented MVCNN with triplet net-
work. For AlexNet, we extract the features of the query
images and rendered views at the pool5 layer of a pre-
trained AlexNet model. The distance is computed as the
minimum distance between the query image and 12 ren-
dered views of a 3D shape. For MVCNN, we follow the
original method in [21] for cross-domain 3D shape retrieval
(they use it for sketch-based 3D shape retrieval, while we
adopt it for image-based 3D shape retrieval). Image features
are extracted from the pool5 layer of a pre-trained AlexNet
model, and 3D shape features are extracted from the view-
pooling layer of MVCNN. The MVCNN is based on a pre-
trained AlexNet (we tried with a fine-tuned AlexNet, but it
gets even worse results due to the large domain differences).
The distances are computed as the L2 distances between the
normalized image features and 3D shape features. These
experiments show that there exists an large domain gap be-



Method mAP
AlexNet pool5 7.16%
MVCNN [21] 7.92%
Triplet + MVCNN 40.85%
CDTNN + Adaptation Layer 47.84%
CDTNN + Adaptation Layer + CVC 52.67%

Table 2. Retrieval performance (mAP) for cross-domain image-
based 3D shape retrieval.

tween images and 3D shape views that can not be bridged
with simple CNN features.

We augment the original MVCNN with triplet network
as a strong baseline approach (Triplet MVCNN in Table 2).
We use AlexNet for the anchor image stream and MVCNN
with view-pooling for the positive and negative streams in
the triplet network. Comparing to the original MVCNN for
cross-domain retrieval [21], our triplet MVCNN explicitly
learns the cross domain image-shape pairs and improves the
mAP to 40.85%.

Our CDTNN model (CDTNN + Adaptation Layer) with
adaptation layer further improves the triplet MVCNN to
47.84%. It shows the effectiveness of the adaptation layer
for bridging the gaps between two different domains. Fi-
nally, incorporating the CVC layer (CDTNN + Adapta-
tion Layer + CVC) achieves the best performance 52.67%.
The experimental results confirm that end-to-end Cross-
Domain Triplet Neural Network (CDTNN), Adaptation
Layer and Cross-View Convolution (CVC) are very effec-
tive for image-based 3D shape retrieval. Some results are
visualized in Figure 5.

4.3. Ablation Study

We are interested in whether the adaptation layer is nec-
essary for the cross-domain learning. To clarify this, we
investigate four different settings, sharing or not sharing the
weights (i.e., sharing the weights for Image-CNN and View-
CNN) and whether to include an adaptation layer. These
experiments are conducted with CDTNN with CVC layers.

Table 3 shows the retrieval results. The shared-weight
model with the adaptation layer shows the best perfor-
mance. The results reveal that the adaptation layer improves
the results for both shared and unshared weights. In ad-
dition, it can significantly reduce the model parameters by
sharing the weights between Image-CNN and View-CNN
without deteriorating the retrieval performance.

4.4. Instance-level IBSR

Our CDTNN only requires the pair-wise similarities dur-
ing training, it can be easily adopted into instance-level re-
trieval, i.e., images and 3D shapes belong to the same in-
stance are “similar” pairs and others are “dissimilar” pairs.
The goal of instance-level retrieval is to retrieve the exact
3D shape instances to the query objects. We compare our

Shared weights Adaptation layer mAP
No No 45.49%
No Yes 52.02%
Yes No 44.49%
Yes Yes 52.67%

Table 3. Adaptation layer is very effective for learning the cross-
domain triplet neural network (see Figure 2). Also, it can signif-
icantly reduce the model parameters (i.e., by sharing the weights
between View-CNN and Image-CNN) without any performance
drop.

(a)

(b)
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Bookshelf

Figure 5. Example retrieval results of our system. (a) Successfully
retrieved 3D shapes. Our method retrieves similar 3D shapes with
2D query images, even if the objects are not in the central positions
and presented with various scales. (b) Some failure cases of our
system are mainly caused by severe occlusion (e.g., a person lies
on a bathtub), multiple objects (e.g., a person holds a guitar) and
similar objects (stool vs. chairs), showing that our dataset is very
challenging.

method with the state-of-the-art method: Lifted-Structured
Embedding (LSE) [26], and evaluate the performance on
three categories of ObjectNet3D: aeroplane, car, and chair.
We quantitatively evaluate the retrieval performance by us-
ing the annotations in ObjectNet3D.

For each category, we split the 80% of training images
for training and 20% for testing, as ObjectNet3D does not
have annotations for the testing images. We crop each ob-
ject in the images using the bounding box annotations. Each
object is used as a query image for training and testing. We
use Recall@K for our evaluation metric. Table 4 shows the
results. Original LSE [26] only uses the synthetic images
for training the embedding space. For fairly comparing to



Category aeroplane (384 shapes) car (1630 shapes) chair (1387 shapes)

Method LSE
LSE

(+real) CDTNN LSE
LSE

(+real) CDTNN LSE
LSE

(+real) CDTNN

R@1 0.028 0.009 0.042 0.000 0.017 0.029 0.006 0.015 0.067
R@10 0.079 0.102 0.206 0.004 0.069 0.182 0.038 0.106 0.227
R@20 0.116 0.181 0.294 0.020 0.103 0.270 0.073 0.160 0.329
R@50 0.208 0.319 0.483 0.044 0.166 0.450 0.141 0.272 0.485
R@100 0.421 0.495 0.660 0.082 0.240 0.610 0.221 0.398 0.617

Table 4. Results of instance-level image-based 3D shape retrieval. Our method outperforms LSE [26] in all categories. For fair comparison,
we augment their method by using the real images for training (LSE (+real)). The evaluation metric is Recall@K (the higher the better).

our method, we augment it by incorporating the real images
in the training (LSE (+real)). The results demonstrate that
CDTNN significantly outperforms LSE and LSE (+real) in
all categories.

5. Conclusions
In this work, we propose a Cross-Domain Triplet Neural

Network (CDTNN) for image-based 3D shape retrieval. We
introduce a new Cross-View Convolution (CVC) layer to
better model the view sequences of a 3D shape. For jointly
training the cross-domain model in an end-to-end manner,
we investigate an adaptation layer for converting the real
images to the rendered views, and automatically extracting
the salient objects in the images. We speed up the triplet
training by presenting a new fast CDTNN architecture. Ex-
perimental results validate the effectiveness of the proposed
methods on both category-level and instance-level retrieval.
For future work, we seek further improvements by incorpo-
rating the region-based methods (e.g., object proposal) for
handling multiple objects in an image, and extracting salient
parts for improving the fine-grained 3D shape retrieval.
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